
We have allowed you to comment and suggest on the Google Docs (ping us on the
message board if you can't) if you would like to provide any feedback (anything small or
big such as a typo, grammar mistake, suggested change, etc. is welcome).

CSE 332: Data Structures and Parallelism

Generics in CSE 332

In CSE 332, we will use generics, but they are not an important topic. This guide is
intended to walk you through the icky parts from a “usage” perspective. CSE 331 will
cover exactly how these things work and why they are the way they are, but CSE 332 is
not a “Java” course, so we’ll learn just enough to get by.

Creating Generic Arrays
Suppose we have a type parameter E and we would like to create a new array. The
standard way we would do this would be:

E[] array = new E[SIZE];

Unfortunately, in Java, this will not compile. The underlying reason is how generics are
implemented in Java. In particular, Java cannot figure out what constructor to call for E,
because it does not know at runtime what E is.
The workaround is to create an array of a base type (Object, Comparable, etc.) and
cast it.

For ArrayStack and MinFourHeap, you will use the following declaration:

E[] array = (E[])new Object[SIZE];

For CircularArrayFIFOQueue and MinFourHeapComparable, you will use

E[] array = (E[])new Comparable[SIZE];

There is a similar issue if we would like to create an array of a parameterized type. For
example, if we have a class (not a type parameter) called Thing which takes a type
parameter E, and we would like to create an array of type Thing<E>[], we would do
the following:



Thing<E>[] array = (Thing<E>[])new Thing[SIZE];

That is, here, we are able to create the array, because the type is a real type, but the
type E is still not known. So, we must cast it after creating the array.

Casting Generic Nodes to Specific Nodes
For all the trees (Tries, BSTs, AVL Trees) we will deal with this quarter, there will be a
hierarchy of node types. The field root will usually be of the most general version. For
example, for AVLNode, it will be BSTNode, and for HashTrieNode, it will be
TrieNode. This means that you will always have to cast the root immediately after
getting it. That is, anywhere you do this.root in your HashTrieMap, you should cast
it like this before use:

(HashTrieNode)this.root

Type Parameters with Restrictions
You may not be familiar with type parameters that have restrictions. In CSE 332, we will
never ask you to write these yourself, but it can be useful to be able to read them.
Consider the type definition of TrieMap

TrieMap<A, K extends BString<A>, V> extends Dictionary<K, V>

This should be read in the following way. First, we introduce these placeholders:
● A is any type
● K is a subclass of BString<A>
● V is any type

Then, we begin using these types, mandating that:
● TrieMap must be a Dictionary that uses the above definitions of K and V


